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Abstract—A multigrid method is presented for the calculation of three-dimensional turbulent jets in
crossflow. Turbulence closure is achieved with either the standard £—¢ model or a Reynolds Stress Model
(RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid
method to be obtained with both turbulence models. With the k—& model the rate approaches that for
laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in
the latter may be responsible. Computed results with both turbulence models are compared to experimental
data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow
velocity, but RSM yields better predictions of the Reynolds stresses.

INTRODUCTION

THREE-DIMENSIONAL turbulent jets in crossflow have
important engineering applications in both confined
and unconfined environments. Examples of jets issu-
ing into confined crossflow include internal cooling
of turbine blades, dilution air jets in combustion
chambers, jets from V/STOL aircraft in transition
flight, etc. The examples of turbulent jets issuing into
unconfined (semi-infinite) crossflow are even more
numerous. These include discharges from cooling
towers or chimney stacks into the atmosphere or
sewerage and waste heat into water bodies, film-
cooling of turbine blades, etc.

The interaction of the jets with the crossflow has
been investigated in numerous experimental studies
[1-6]. Crabb et al. [2] present a comprehensive review
of pre-1980 studies, most of which only deal with
mean flow properties. Measurements of turbulent
properties can be found in refs. [2-6]. Numerous com-
putational studies of the generic problem of turbulent
jets in crossflow are also reported in the literature [7-
10]. Demuren [11] presents an extensive review of the
various modeling approaches. Due to computational
expense, none of the earlier studies use sufficiently fine
grids. In a recent paper, Claus and Vanka [12] present
a systematic study of the effect of grid resolution on
the mean flow and turbulence fields. These show that
for computational grids up to 96 x 96 x 256 grid-inde-
pendent solutions could not be obtained. They use a
multigrid method so that the natural progression for
grid refinement is to double the number of grid points
in each direction, which is more stringent than the
grid-dependency tests in most other studies. There
have also been frequent questions as to the role of the
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turbulence model in predicting correctly this rather
complicated flow. Most computations employ the k-
¢ turbulence model which assumes gradient diffusion
relations for the Reynolds stress and an isotropic
eddy-viscosity distribution. Andreopoulos and Rodi
[4] show by analyzing their measurements of Reynolds
stresses and velocity gradients that this approach
is only partly supported by experimental evidence. In
some regions, the turbulent stress field is out of bal-
ance with the mean velocity strain field so that the
Boussinesq eddy-viscosity hypothesis would require
negative eddy viscosities which the k—& turbulence
model does not allow for. Further, locations of zero
shear stresses do not coincide with those with zero
velocity gradients.

The present study attempts to address both prob-
lems of the grid resolution and the turbulence model.
Computations are performed with a multigrid pro-
cedure which enables convergence on very fine grids
within a relatively small number of iterations. The
Reynolds stresses are computed with a second-
moment turbulence closure model as well as the stan-
dard k—¢ model.

MATHEMATICAL MODEL

Mean flow equations

In the present work, the time-averaged, three-
dimensional, steady-state equations governing the
turbulent flow form the basis for the numerical
method. The equations may be expressed, in con-
servative form and Cartesian tensor notation as

continuity
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NOMENCLATURE

¢y, ¢, constants in the Reynolds stress model p Cartesian coordinates.
Cu» Co15 ;2 cONStants in the k—¢ turbulence

model Greek symbols
D jet diameter o, f,7 constants in the Reynolds stress modcl
I near-wall proximity function in the é, Kronecker delta

Reynolds stress model 3 rate of dissipation of the turbulent kinetic
G rate of production of the turbulent energy

kinetic energy K von Karman constant
H height of the duct u molecular viscosity
k turbulent kinetic energy Uy turbulent eddy viscosity
P pressure o density
R jet to crossflow velocity ratio Gy turbulent Prandtl/Schmidt number for @
S, source term for dependent variable ® @ general representation of the dependent
U,  crossflow velocity variable.
U, Cartesian velocity components
ui u3,ui. Reynolds normal stresses in Superscripts

Cartesian directions | lateral direction
Uity U\ 15, U, Reynolds shear stresses 2 vertical direction
V; jet velocity 3 longitudinal direction.

momentum (3) ensures that the trace of the tensor u,u, is equal to

¢ ¢ i,
5)7(PU1UI-) = - E,-’P‘F 7| —pu,

oy’
ou, au,)]
+ul- - 2

with i = 1,2,3 and / = 1,2, 3 representing properties
in the lateral, vertical and longitudinal directions,
respectively. y* (= y',p? y?) represent the Cartesian
coordinates; U, the Cartesian velocity components ;
P the pressure; p the density and g the molecular
viscosity. The equations are expanded with Einstein’s
summation rule for repeated indices. —puu, rep-
resents the Reynolds stress tensor which is symmetric
with six independent components to be determined
before the mean flow equations can be closed. This is
the task of the turbulence model.

Turbulence models

In the present work, the Reynolds stresses are deter-
mined from either the k—¢ model described in detail
by Launder and Spalding [13] or the quasi-isotropic
version of the Reynolds stress models of Launder,
Reece and Rodi [14], hereafter denoted LRR.

In the k— model, the Reynolds stresses are cal-
culated with the Boussinesq eddy viscosity hypothesis

as
- au,
puU; = 6y1 +

oU,
W.’)— ko, Q)

where J,1s the Kronecker delta which is equal to unity
when i = / and zero when i # /. The form of equation

twice the turbulent kinetic energy.
1, is the eddy viscosity given by

k2
He = Cu P ‘;‘7' (4)

Thus, in order to compute y,, the distributions of the
turbulent kinetic energy k and its rate of dissipation ¢
over the computational domain are required. These
are obtained by solving the transport equations

5 o (u ok
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where G is the rate of production of turbulent kinetic
energy by the interaction of the Reynolds stresses with
the mean flow, given by

G = —piyi . )

oy

The empirical constants appearing in equations (4)—
(N arec,=0.09,c,, =144, ¢, =192, 6,= 1.0 and
o, = 1.3. Equations (1)-(9) form a closed set which
can be solved with a numerical method to yield the
distributions of the three velocity components, the
pressure, and the six components of the Reynolds
stresses.

The Reynolds stress model does not assume the
Boussinesq hypothesis. Rather, exact transport equa-
tions can be derived by combining the Navier—Stokes
equations with their time-averaged versions, the so-
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called Reynolds equations. This does not, however,
solve the turbulence closure problem since the equa-
tions contain terms of higher order which cannot be
calculated exactly but must be modeled or approxi-
mated. The presumption then is that since these terms
are third-moment statistics inaccuracies in approxi-
mating them will have much smaller effect on the mean
flow than errors in modeling the second-moments. If
the proposals of LRR [14] model 1 are adopted to
approximate the pressure—strain, diffusion and dis-
sipation terms, the resulting system of equations can
be written in Cartesian tensor notation as

0 - il k ouu;
'5? (PU/“i“j) = 67)21 <C.\~P : Uy, *y /)

ou, __aU
—p{(l—a)[uu, L }
oy oy

;1 U,
—-p uu,a ,+uu,6

ou
:|+ géu(a*—l;)ulum a ,r],

oU;, oU; i 5 .
+yk <0 + gV >+ % (uu;— 30,;k) + goijg} 3)

o, B, ¥, ¢, and c, are empirical coefficients given by:
a=0.7636—0.06f; B =0.1091+0.06f; 7 =0.182;
¢, =1.5-0.50f; and ¢, = 0.22. f is a wall-proximity
function which takes a value of unity near walls and
zero in a homogeneous flow with no walls. Thus an
attempt is made to interpolate the coefficients between
values found empirically in two asymptotic flows. The
method for calculating f is described in detail by
Demuren and Rodi [15]. Equations (1), (2), (6) and
(8) now form a closed set which should be solved
simultaneously by the numerical method to determine
the mean-flow and turbulence fields.

If the terms involving gradients of the Reynolds
stresses on the r.h.s. of equation (2) are treated
explicitly the system of equations will be very stiff and
it will be extremely difficult to obtain a converged
solution with an iterative scheme. The stiffness can be
reduced considerably by splitting the Reynolds stress
W;H; Into two parts

i = gy M (09U
i = Uil p<ay’+ay")' )

The first part is treated explicitly. The second part
is added to the molecular diffusion term and treated
implicitly. The modified momentum equation has the
form

0 0 .,
— P+ il By 4Z 0

ay' dy
U 0oy,
7+ 3 ):l (10)
Discretization method

A finite-volume numerical method is used in the
present study to convert the transport equations from

Ié)
5}7(.0U{Ui) = -
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FiG. 1. Control volume showing node P and its nearest
neighbors.

°s

partial-differential form to algebraic ones which are
then solved iteratively. The computational domain is
divided into a finite grid of control volumes (CV)
with the unknown value of all dependent variables
assumed stored at the center of each CV, i.e. a non-
staggered grid arrangement is used. The conservation
equations are satisfied over each CV by using Green’s
theorem to convert volume integrals of the equations
to surface integrals which represent the fluxes in and
out of'its six surfaces. Now these fluxes must be related
to nodal values which are located at the center of
the CVs. Figure 1 shows a typical CV with its six
neighboring nodes. The diffusion fluxes are approxi-
mated with central differences. The convection terms
require special treatment. It is well known that cen-
tral difference approximation of convection terms in
highly convective flows leads to odd—even decoupling,
non-physical oscillatory solution, and perhaps insta-
bility. To overcome the odd—even decoupling problem
it has been popular in incompressible flow codes [16]
to stagger the nodes for the velocity components by
half a cell in each direction relative to the other nodes,
whereas in compressible flow codes [17] a fourth-
difference artificial dissipation term is added to the
density equation. Examination of the continuity equa-
tion shows that it contains only convection terms,
hence the odd-even decoupling problem results
mainly from the use of central differences in this equa-
tion. In compressible flow codes the dependent vari-
able resulting from this equation is the density, hence
the form of the artificial dissipation term. Most incom-
pressible flow codes do not solve equation (1) directly
but solve a form of Poisson equation for pressure
derived by combining equations (1) and (2). Hence,
staggering of the grid nodes indirectly introduces
upwind differences for pressure, and since the sta-
bilizing properties of upwind differencing are due
indirectly to the introduction of artificial diffusion/
dissipation, both approaches are successful for
similar reasons. Rhie [18] has analyzed the stability of
pressure based solvers on a non-staggered grid using
a fourth-difference artificial dissipation pressure term.
This practice is followed in the present work. The
difference in practices so far appears to be largely
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historical. Incompressible flow codes were originally
designed for internal flows and finite differences were
used on rectangular grids where staggering was very
easy to implement. With the conversion to finite vol-
ume formulation and the need for curvilinear grids,
staggering became messy and the approach of Rhie
and Chow [19] has now become common practice.
This is also sometimes called ‘momentum inter-
polation® [20], a terminology which is unfortunate
since it clouds the real process. Compressible flow
codes on the other hand, required body-fitted coor-
dinates so that grid staggering was never an attractive
option,

Some form of upwinding or artificial dissipation is
also required for the remaining equations. For these
the hybrid (central/upwind) difference scheme [16] is
adopted. With these approximations the unknown
nodal value is linked to those of its six nearest neigh-
bors by an algebraic equation of the form

Ap(bp = Z Anhd’nh + S(/;

nb

an

where nb = E, W, N, S, U, D and ¢ represents any
of the dependent variables.

Boundary conditions are used to specify dependent
variable values along the six boundaries. Four types
of boundary conditions are encountered in the present
study, namely, inlet, outlet, symmetry planes and
walls. Inlet conditions are specified from experimental
data, if known. The outlet is an outflow boundary
along which the first derivative of all variables is set
to zero. Along symmetry planes the normal gradient
of all variables is set to zero, and the normal velocity
is also zero. The walls are treated specially because
integration of the equations is not carried all the way
down to the walls, but the wall-function method [13,
15] is used to prescribe values of dependent variables
along the first row of grid nodes away from the wall.

The equation set for all internal nodes in the com-
putational domain must be solved simultaneously. An
ADI scheme is utilized for this purpose. The equations
are solved in a sequential manner, one variable at a
time, based on the SIMPLEC algorithm described
by van Doormaal and Raithby [21]. In the present
multigrid context, this algorithm serves primarily as
a relaxation scheme with the important requirement
being its smoothing properties. Shaw and Sivalo-
ganathan [22] have shown that the SIMPLE algo-
rithm on which it is based has good smoothing prop-
erties. One cycle of the relaxation scheme has the
following steps :

1. solve the U, momentum equation using the avail-
able pressure field ;

2. then the U, momentum equation ;

3. then the U; momentum equation ;

4. compute mass fluxes through the faces of CV
by linear interpolation of velocity field plus fourth-
difference artificial dissipation terms in pressure (as

A. O. DEMUREN

explained this is equivalent to upwind weighting of
pressure gradients) ;

5. compute mass Source errors ;

6. solve an equation for the correction to the pres-
sure field necessary to eliminate the mass source
errors, and then correct the pressure and velocity
fields.

Multigrid procedure

In the present work the FAS-FMG (full approxi-
mation storage-full multigrid) algorithm originally
developed by Brandt [23] is employed to solve the
mean-flow equations. The present implementation
derives from the previous work by Demuren [24]. The
main differences relate to the changes to the relaxation
scheme due to non-staggered grids and the sequential
solution steps discussed in the preceding section.
Numerical experiments showed no advantage in using
the coupled approach proposed by Vanka [25]
implemented in ref. [24], and it can be shown math-
ematically that it is less stable in a single-grid
procedure. Further, the sequential approach is more
casily vectorizable.

The multigrid process starts on the coarsest grid
with relaxation cycles repeated until convergence. The
next finer grid is then generated by halving the sizes
of control volume sides in each direction. The coarse
grid results are then prolongated onto the fine grid
to provide initial conditions. The multigrid process
cycles between the two grids until convergence is
obtained on the finer grid. The next finer grid is then
generated and initialized as before. The MG process
now cycles between the three grids until convergence.
The present implementation uses V-cycles with one
relaxation sweep on the finest grid before residuals
are restricted to a coarser grid, and one relaxation is
also performed on each intermediate grid. Five relax-
ation sweeps are performed on the coarsest grid. This
is not the most efficient cycling scheme, but it has been
found to be a good compromise between robustness
and efficiency in a wide range of test cases.

Restriction and prolongation operators are re-
quired to transfer the fine grid approximations and
residuals onto the coarse grid and the coarse grid
corrections onto the fine grid, respectively. Residuals
are restricted by simply summing the residuals of the
eight fine grid CVs that make up each coarse grid
CV. Otherwise, trilinear interpolation is used for
restricting the primitive variables or prolongating the
corrections.

The equations for turbulent quantities &, & and wu,
are only solved on the current finest grid level during
the MG process. Values required for diffusion fluxes
or source terms on coarser grids are restricted from
these. In future work, the MG process will be extended
to these variables as well. The scheme must be modi-
fied however to ensure that &, ¢ and the normal stress
components 7, uZ and #Z can never become negative
at any stage.
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RESULTS AND DISCUSSION

Computational details

The test case for the present work is selected from
experimental studies of pairs of opposed jets dis-
charging normally into a cross stream reported by
Atkinson er al. [3]. Figure 2 shows a schematic
diagram. Two jets of equal diameter D issue at the
same velocity from opposite pipes into a cross stream.
The channel height is equal to 4D and the width is
12D. The jet to crossflow velocity ratio R is 1.8 and
the Reynolds number based on the cross stream vel-
ocity and channel height is 1.1 x 10°. An indication of
the grid distribution is given in Fig. 3 which shows
the velocity vectors in the center plane computed on
the finest grid of a three-level MG scheme. The coars-
est grid has (12 x 10x22) points in the (y', p?,»?)
directions. There are two planes of symmetry so com-
putations are only performed for a quarter section of
the flow domain which extends from 4D upstream of
the jet hole to 14D downstream. The vector plots show

@ wall

F1G. 2. Pair of opposed jets in crossflow.
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F1G. 4. Residual history: laminar jet in crossflow, Re = 100, R = 1.8.

that the jets from opposite sides impinge at the mid-
plane about 1D downstream.

Convergence rates

In order to evaluate the multigrid performance lami-
nar flow calculations were made for the configura-
tion of Fig. 2, but with the outlet plane at 4D down-
stream of the jet hole, and a cross stream Reynolds
number of 100. Three calculations were made:
single grid, two-level MG and three-level MG. The
finest grid in each case has (42 x 34 x 82) points in the
(¥', 3%, y*) directions. The residuals of the momentum
and continuity equations are plotted against the num-
ber of iterations in Fig. 4. MG acceleration is clearly
demonstrated, with reduction of 34 orders of mag-
nitude in about 50 cycles, corresponding to a spectral
radius {error reduction rate per cycle) of about 0.85.
Figure 5 shows the history of the U, and U; velocity
components at a typical point (1D, 1D, 1D) in the
domain. The three-level MG results reach asymptotic
values in about five cycles, the two-level MG in about
30 cycles and the single grid results are still a long way
away. Of course, the FM@G scheme ensures that initial

values on fine grids are good guesses of the final solu-
tion since they are interpolated from converged coarse
grid results. Each MG cycle of the three-grid-level
calculations took 2 s of CPU time of the Cray YMP,
25% of which was overhead for prolongations, restric-
tions and smoothings on coarser grids.

The residual histories for laminar, k—& model and
RSM calculations on the three-level MG are com-
pared in Fig. 6. There is again rapid convergence
in the first 50 cycles, thereafter the convergence rate
deteriorated with the complexity of the system of
equations. The turbulent flow computations were

made at Re = 1.1 x 10° so they are not for exactly the
same conditions as the laminar flow.

Grid dependency

It has not been possible to confirm grid inde-
pendency within the limits of the available computer
resources. Figure 8 compares vertical profiles of the
streamwise velocity component in the center plane at
6D and 8D computed with a three-level MG and a
four-level MG. The k— model is used in both com-
putations. Significant differences exist only near the
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Fi1G. 7. Velocity histories at point (1D, 1D, 1D): laminar, k¢ model and RSM computations.

mid-plane at 6, but at 8D the results are quite close.
The differences are much smaller than those reported
by Claus and Vanka [12] in their study of a row of
jets in crossflow. The differences are also small in
comparison with deviations from experimental data.
It should be noted that there is an eight-fold difference
in the number of grid points utilized. Calculations
with RSM also show similar changes with grid
refinement. In the light of these, all subsequent results
to be presented are for calculations on the three-level
grid.

Comparison with experiment

The present computations with the two turbulence
models, on a three-level grid, are compared with ex-
perimental results of Atkinson et al. [3] in Figs. 9-11.
Vertical profiles of the streamwise velocity component
are compared in Fig. 9. The RSM predicts higher

(2) ¥’= 6D

2.0 L]

15

¢ o}

05 F wee

0.0

1.5

magnitudes near the mid-plane and lower magnitudes
near the wall. In terms of agreement with experimental
data, there is little to choose between them. The largest
deviation from experimental data is at 12D. Although
the profiles are the same shape the experimental data
indicate magnitudes which are 20% lower. In fact,
the data show a 10-15% reduction in the streamwise
velocity between 81 and 12D. This is unusual since it
would be expected that the flow should tend towards
more uniformity with distance downstream, and the
normalized streamwise velocity should approach
unity rather than deviate further from it. It is possible
that there is a systematic error in the experimental
data.

The Reynolds stresses are compared along the
center plane, at axial locations 8D and 12D in Figs.
10 and 11, respectively. The k—¢ model consistently
overpredicts the normal stresses. This indicates that

(b) y’= 8D
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FiG. 8. Grid dependency test, Re = 10°, R = 1.8,
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the turbulent kinetic energy is overpredicted. The cul-
prit is likely to be the production term ¢ (equation
(7)) which is known to lead to infinite turbulent kinetic
energy near the impingement point in a stagnation
flow, when used in conjunction with the eddy viscosity
hypothesis. The RSM produces normal stresses which
are in better agreement with the measurements, except
12 near the mid-plane. At 8D both models predict
excessive shear stress magnitudes in comparison with
cxperimental data. At 12D, the RSM results agree
better with the data. Another unusual feature of the
data is that they indicate an increase in shear stress in
going from 8D to 12D, whereas one would expect a
decrease, as the computations show. These exper-
iments are, of course, quite difficult to perform. A
slight difference in the flow properties of the opposing
jets may lead to significant deviations from symmetry
about the mid-plane and perhaps unsteadiness and
other unexpected effects. On the other hand, the RSM
predictions are far from perfect. The present version
of RSM, based on the proposals of LRR [14], is one
of the simplest and most widely tested. However, it is
known to have shortcomings in complex flows with
strong swirl and curvature. Recently, a more sophis-

ticated RSM has been proposed by Craft et al. [26]
and Speziale et al. [27]. The former has demonstrated
improved predictions of strongly swirling flows and
the latter has performed better in homogeneous shear
flows with rotation. They are however still at an early
stage of testing and validation in a wider range of
flows. For example, initial application to homo-
geneous shear flow with curvature (Tselepidakis,
private communication) did not replicate such
improvements.

CONCLUDING REMARKS

A multigrid procedure for calculating turbulent jets
in crossflow has been presented. Multigrid con-
vergence rates are demonstrated for laminar flow,
There is some degradation in performance with
increase in complexity of the turbulence model, but
the convergence rates are still quite impressive in com-
parison to those for single grids. The two turbulence
models predict nearly the same level of agreement of
mean streamwise velocity with experimental data. But
the RSM predicts Reynolds stresses which are in much
better agreement with experiments.



Computations of 3D turbulent jets in crossflow
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MODELES DE TURBULENCE AVEC ACCELERATION MULTIGRILLE POUR LE
CALCUL DES JETS TURBULENTS 3D EN ECOULEMENT CROISE

Résumé—On présente une méthode multigrille pour le calcui des jets turbulents tridimensionnels en
écoulement croisé. La fermeture est obtenue avec soit le modele k—¢ soit un modéle de contrainte de
Reynolds (RSM). L’accélération multigrille conduit a des vitesses de convergence trés supérieures a celles
de la méthode a grille unique pour les deux modéles de turbulence. Avec le modéle k—¢ la vitesse approche
celle pour I’écoulement laminaire mais elle est un peu plus faible avec RSM car dans ce dernier cas le
systéme d’équations est plus lourd. Les résultats calculés avec les deux modéles de turbulence sont comparés
aux données expérimentales pour une paire de jets opposés en écoulement crois¢. Les deux modéles donne
un accord raisonnable en ce qui concerne la vitesse moyenne de I'écoulement, mais RSM prédit mieux les
contraintes de Reynolds.
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AL O. DEMUREN

MEHRGITTER-BESCHLEUNIGUNGS- UND TURBULENZ-MODELLE FUR DIE
BERECHNUNG DREIDIMENSIONALER QUERANGESTROMTER TURBULENTER
STRAHLEN

Zusammenfassung—In der vorliegenden Arbeit wird cin Mchrgitter-Verfahren tiir die Berechnung drei-
dimensionaler turbulenter querangestromter Strahlen vorgestellt. Der Turbulenzschlufl wird mit dem &

e-Standardmodell oder einem Reynolds'schen Spannungsmodell (RSM) erzielt. Die Mchrgitter-Besch-
leunigung ermoglicht bei beiden Turbulenzmodellen Konvergenzgeschwindigkeiten, die wesentlich hoher
sind als mit Einfachgitter-Methoden. Beim & -e-Modell erreichen die Werte der Konvergenzgeschwindigkeit
diejenigen der laminaren Stromung, withrend sic bei der RSM-Methode geringer sind. Die crhéhte Stei-
figkeit des Gletchungssystems bei letztercr Methode kénnte hierfir verantworlich sein.  Bere-
chnungsergebnisse aus beiden Turbulenzmodellen werden mit experimentellen Daten fiir zwei gegen(-
berliegende Fluidstraklen im Kreuzstrom verglichen. Beide Modelle erzielen eine plausible
Ubercinstimmung der mittleren Strémungsgeschwindigkeit, jedoch ist mit der RSM-Methode cine bessere

Vorausberechnung der Reynolds-Spannung erzietbar.

WCIMOJIb30BAHUE MHOT'OCETOUYHBIX MOJEJIEN JJ151 PACYETOB TPEXMEPHBIX
TYPBYJIEHTHBIX CTPYH IIPU NEPEKPECTHOM TEUEHHWHU

Ansoraums—IIpeacTaBned MHOI'OCETOYHBIH METO/ pacYeTa TPEXMEPHBIX TYPOYJICHTHBIX CTpy# Iipu
NEePEeKPECTHOM TeHeHHH. 3aMBbIKaHHE CHCTEMbl YPABHEHHH OCYILIECTBJIAETCA C MOMOILBIO CTAHAAPTHOH
k—&¢ MoOmenu HIM MOAENM pelHONbCOBCKHX HarpsaxeHu# (RSM). Hcnosnp3oBaHHE MHOTIOCETOYHBIX
Mojesell No3BOJISET AOCTHYL ropasfgo OoJsiblUed CKOPOCTH CXOOMMOCTH, Y€M MPH OXHOCETOHYHOM
MeTojg, Aa ob6enx Mogenei Typbynentrnoctu. [Ipu npumenesus k—-¢ MoaeaH ckopocTh nprOIKaeTCs
K 3HAYEHHWIO JUIS JAMHHAPHOIO TEYEHHMs, B CJy4Yae )Xe Mcnoib3oBanua mozaend RSM oxa Heckonbko
HHXE, YTO MOXET OOBIACHATHCH BOJIbLIEH KECTKOCTBI CHCTEMBl yPABHEHHH B 3TOH Momenn. Pe3ynbTaTel
pacyeToB Mo 00eMM MOIEIIM TYpOYJIEHTHOCTH CPaBHHBAIOTCH C IKCIEPHMEHTAIBLHBIMH JAHHBIMU [Is
fapsl OPOTHBOMOJIOXKHO HAaNpPAaBIEHHBIX MEPEKPecTHbIX cTpyd. Ilpu sTom najs cpenHed CKOPOCTH
TeyeHHs ofe MOJIENH AAIOT XOpoiliee COrJiacHe, a I PeliHONBACOBCKHX HAIPSOXeHWH Oosiee TOYHBIMH
SIBJISIOTCS PE3yJIbTAThI, TOJ1y4eHHbIC Ha OCHOBE MoJeau RSM.



