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Abstract-A multigrid method is presented for the calculation of three-dimensional turbulent jets in 
crossflow. Turbulence closure is achieved with either the standard k-e model or a Reynolds Stress Model 
(RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid 
method to be obtained with both turbulence models. With the k-e model the rate approaches that for 
laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in 
the latter may be responsible. Computed results with both turbulence models are compared to experimental 
data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow 

velocity, but RSM yields better predictions of the Reynolds stresses. 

INTRODUCTION 

THREE-DIMENSIONAL turbulent jets in crossflow have 
important engineering applications in both confined 
and unconfined environments. Examples of jets issu- 

ing into confined crossflow include internal cooling 
of turbine blades, dilution air jets in combustion 
chambers, jets from VjSTOL aircraft in transition 
flight, etc. The examples of turbulent jets issuing into 
unconfined (semi-infinite) crossflow are even more 
numerous. These include discharges from cooling 
towers or chimney stacks into the atmosphere or 
sewerage and waste heat into water bodies, film- 
cooling of turbine blades, etc. 

The interaction of the jets with the crossflow has 
been investigated in numerous experimental studies 

[l-6]. Crabb et al. [2] present a comprehensive review 
of pre-1980 studies, most of which only deal with 
mean flow properties. Measurements of turbulent 
properties can be found in refs. [2&6]. Numerous com- 
putational studies of the generic problem of turbulent 
jets in crossflow are also reported in the literature [7- 
10]. Demuren [ 1 l] presents an extensive review of the 

various modeling approaches. Due to computational 
expense, none of the earlier studies use sufficiently fine 
grids. In a recent paper, Claus and Vanka [ 121 present 
a systematic study of the effect of grid resolution on 
the mean flow and turbulence fields. These show that 
for computational grids up to 96 x 96 x 256 grid-inde- 

pendent solutions could not be obtained. They use a 
multigrid method so that the natural progression for 
grid refinement is to double the number of grid points 
in each direction, which is more stringent than the 
grid-dependency tests in most other studies. There 
have also been frequent questions as to the role of the 

t Work funded under Space Act Agreement C99066G. 

turbulence model in predicting correctly this rather 
complicated flow. Most computations employ the k- 

E turbulence model which assumes gradient diffusion 
relations for the Reynolds stress and an isotropic 
eddy-viscosity distribution. Andreopoulos and Rodi 
[4] show by analyzing their measurements of Reynolds 

stresses and velocity gradients that this approach 
is only partly supported by experimental evidence. In 
some regions, the turbulent stress field is out of bal- 
ance with the mean velocity strain field so that the 
Boussinesq eddy-viscosity hypothesis would require 
negative eddy viscosities which the k-E turbulence 

model does not allow for. Further, locations of zero 
shear stresses do not coincide with those with zero 
velocity gradients. 

The present study attempts to address both prob- 

lems of the grid resolution and the turbulence model. 
Computations are performed with a multigrid pro- 
cedure which enables convergence on very fine grids 
within a relatively small number of iterations. The 
Reynolds stresses are computed with a second- 
moment turbulence closure model as well as the stan- 

dard k-c: model. 

MATHEMATICAL MODEL 

Mean flow equations 

In the present work, the time-averaged, three- 

dimensional, steady-state equations governing the 
turbulent flow form the basis for the numerical 
method. The equations may be expressed, in con- 
servative form and Cartesian tensor notation as 

continuity 

&a~ = 0. 
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NOMENCLATURE 

(‘I, c, constants in the Reynolds stress model 

C{‘. (‘i I? (‘eZ constants in the k-t: turbulence 
model 

n jet diameter 

.f near-wall proximity function in the 
Reynolds stress model 

G rate of production of the turbulent 

kinetic energy 
H height of the duct 

k turbulent kinetic energy 

P pressure 
R jet to crossflow velocity ratio 

% source term for dependent variable @ 

LJZ2 crossflow velocity 

U Cartesian velocity components 
u:,z,z. Reynolds normal stresses in 

Cartesian directions 

nIUZ,~(IrQrUZUI Reynolds shear stresses 

V, jet velocity 

I’ ’ Cartesian coordinates. 

Greek symbols 
c(, /I, “J constants in the Reynolds stress model 

61, Kronecker delta 
E rate of dissipation of the turbulent kinetic 

energy 
K von Karman constant 

p molecular viscosity 

pt turbulent eddy viscosity 

Y density 

04 turbulent Prandtl/Schmidt number for 0 
CD general representation of the dependent 

variable. 

Superscripts 
I lateral direction 
2 vertical direction 

3 longitudinal direction. 

momentum 

d 
dy’(pu5u,) = - ;, Pi $ 

/ L -p&i, 

+@ + $)I (2) 

with i = 1,2,3 and I = 1,2,3 representing properties 
in the lateral, vertical and longitudinal directions, 
respectively. y’ (= y’,y*,y’) represent the Cartesian 
coordinates ; r/, the Cartesian velocity components ; 
P the pressure ; p the density and p the molecular 
viscosity. The equations are expanded with Einstein’s 

summation rule for repeated indices. -pu,u, rep- 
resents the Reynolds stress tensor which is symmetric 

with six independent components to be determined 
before the mean flow equations can be closed. This is 
the task of the turbulence model. 

Turbulence models 
In the present work, the Reynolds stresses are deter- 

mined from either the k-c model described in detail 
by Launder and Spalding [13] or the quasi-isotropic 
version of the Reynolds stress models of Launder, 
Reece and Rodi [14], hereafter denoted LRR. 

In the k-e model, the Reynolds stresses are cal- 
culated with the Boussinesq eddy viscosity hypothesis 
as 

-p~,=p,($+$)-:pk6./ (3) 

where 6,is the Kronecker delta which is equal to unity 
when i = I and zero when i # 1. The form of equation 

(3) ensures that the trace of the tensor u,u, is equal to 
twice the turbulent kinetic energy. 

pLt is the eddy viscosity given by 

pL, = CPPkf. 
,? (4) 

Thus, in order to compute p,, the distributions of the 
turbulent kinetic energy k and its rate of dissipation E 

over the computational domain are required. These 
are obtained by solving the transport equations 

+G-pi (5) 

7 
+c,,G; -c&; (6) 

where G is the rate of production of turbulent kinetic 
energy by the interaction of the Reynolds stresses with 
the mean flow, given by 

1 

G = - PGU/ ;_$. 
The empirical constants appearing in equations (4)) 
(7) are C~ = 0.09, c,, = 1.44, c,? = 1.92, gh = 1.0 and 
g,, = I .3. Equations (l))(9) form a closed set which 
can be solved with a numerical method to yield the 
distributions of the three velocity components, the 
pressure, and the six components of the Reynolds 
stresses. 

The Reynolds stress model does not assume the 
Boussinesq hypothesis. Rather, exact transport equa- 
tions can be derived by combining the Navier-Stokes 
equations with their time-averaged versions, the so- 
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called Reynolds equations. This does not, however, 
solve the turbulence closure problem since the equa- 
tions contain terms of higher order which cannot be 

calculated exactly but must be modeled or approxi- 
mated. The presumption then is that since these terms 
are third-moment statistics inaccuracies in approxi- 
mating them will have much smaller effect on the mean 
flow than errors in modeling the second-moments. If 
the proposals of LRR [I41 model 1 are adopted to 
approximate the pressure-strain, diffusion and dis- 
sipation terms, the resulting system of equations can 
be written in Cartesian tensor notation as 

(8) 

a, /I, y, c, and c,~ are empirical coefficients given by : 
a = 0.7636-0.06f; /l = 0.1091+0.06f; y = 0.182; 
c, = 1.5 - 0.5Of; and c, = 0.22. f is a wall-proximity 
function which takes a value of unity near walls and 
zero in a homogeneous flow with no walls. Thus an 
attempt is made to interpolate the coefficients between 
values found empirically in two asymptotic flows. The 
method for calculating f is described in detail by 
Demuren and Rodi [lS]. Equations (l), (2), (6) and 
(8) now form a closed set which should be solved 
simultaneously by the numerical method to determine 
the mean-flow and turbulence fields. 

If the terms involving gradients of the Reynolds 
stresses on the r.h.s. of equation (2) are treated 
explicitly the system of equations will be very stiff and 
it will be extremely difficult to obtain a converged 
solution with an iterative scheme. The stiffness can be 
reduced considerably by splitting the Reynolds stress 
u,uI into two parts 

The first part is treated explicitly. The second part 

is added to the molecular diffusion term and treated 
implicitly. The modified momentum equation has the 
form 

Discretization method 
A finite-volume numerical method is used in the 

present study to convert the transport equations from 

Y2 
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FIG, 1. Control volume showing node P and its nearest 
neighbors. 

partial-differential form to algebraic ones which are 
then solved iteratively. The computational domain is 
divided into a finite grid of control volumes (CV) 
with the unknown value of all dependent variables 
assumed stored at the center of each CV, i.e. a non- 
staggered grid arrangement is used. The conservation 
equations are satisfied over each CV by using Green’s 
theorem to convert volume integrals of the equations 

to surface integrals which represent the fluxes in and 
out of its six surfaces. Now these fluxes must be related 
to nodal values which are located at the center of 
the CVs. Figure 1 shows a typical CV with its six 
neighboring nodes. The diffusion fluxes are approxi- 
mated with central differences. The convection terms 
require special treatment. It is well known that cen- 
tral difference approximation of convection terms in 
highly convective flows leads to odd-even decoupling, 
non-physical oscillatory solution, and perhaps insta- 
bility. To overcome the odd-even decoupling problem 
it has been popular in incompressible flow codes [ 161 
to stagger the nodes for the velocity components by 
half a cell in each direction relative to the other nodes, 
whereas in compressible flow codes [ 171 a fourth- 
difference artificial dissipation term is added to the 
density equation. Examination of the continuity equa- 
tion shows that it contains only convection terms, 
hence the oddeven decoupling problem results 
mainly from the use of central differences in this equa- 

tion. In compressible flow codes the dependent vari- 

able resulting from this equation is the density, hence 
the form of the artificial dissipation term. Most incom- 
pressible flow codes do not solve equation (1) directly 
but solve a form of Poisson equation for pressure 

derived by combining equations (1) and (2). Hence, 
staggering of the grid nodes indirectly introduces 
upwind differences for pressure, and since the sta- 
bilizing properties of upwind differencing are due 
indirectly to the introduction of artificial diffusion/ 
dissipation. both approaches are successful for 
similar reasons. Rhie [ 181 has analyzed the stability of 
pressure based solvers on a non-staggered grid using 
a fourth-difference artificial dissipation pressure term. 
This practice is followed in the present work. The 
difference in practices so far appears to be largely 



historical. Incompressible flow codes were originally 
designed for internal flows and finite differences were 
used on rectangular grids where staggering was very 
easy to implement. With the conversion to finite vol- 

ume formulation and the need for curvilinear grids, 
staggering became messy and the approach of Rhie 
and Chow [19] has now become common practice. 

This is also sometimes called ‘momentum inter- 
polation’ [20], a terminology which is unfortunate 

since it clouds the real process. Compressible flow 
codes on the other hand, required body-fitted coor- 

dinates so that grid staggering was never an attractive 

option. 
Some form of upwinding or artificial dissipation is 

also required for the remaining equations. For these 
the hybrid (central/upwind) difference scheme [16] is 
adopted. With these approximations the unknown 
nodal value is linked to those of its six nearest neigh- 

bors by an algebraic equation of the form 

A,& = 1 An&,,/, + S, (11) 
,rh 

where nb = E, W, N, S, U, II and 4 represents any 
of the dependent variables. 

Boundary conditions are used to specify dependent 
variable values along the six boundaries. Four types 
of boundary conditions are encountered in the present 
study, namely, inlet, outlet, symmetry planes and 
walls. Inlet conditions arc specified from experimental 
data, if known. The outlet is an outflow boundary 
along which the first derivative of all variables is set 
to zero. Along symmetry planes the normal gradient 
of all variables is set to zero, and the normal velocity 
is also zero. The walls are treated specially because 
integration of the equations is not carried all the way 
down to the walls, but the wall-function method [13, 
151 is used to prescribe values of dependent variables 
along the first row of grid nodes away from the wall. 

The equation set for all internal nodes in the com- 
putational domain must be solved simultaneously. An 
ADI scheme is utilized for this purpose. The equations 
are solved in a sequential manner, one variable at a 
time, based on the SIMPLEC algorithm described 

by van Doormaal and Raithby [21]. In the present 
multigrid context, this algorithm serves primarily as 
a relaxation scheme with the important requirement 
being its smoothing properties. Shaw and Sivalo- 
ganathan [22] have shown that the SIMPLE algo- 
rithm on which it is based has good smoothing prop- 
erties. One cycle of the relaxation scheme has the 
following steps : 

I. solve the U, momentum equation using the avail- 
able pressure field ; 

2. then the U, momentum equation ; 
3. then the U3 momentum equation ; 
4. compute mass fluxes through the faces of CV 

by linear interpolation of velocity field plus fourth- 
difference artificial dissipation terms in pressure (as 

explained this is equivalent to upwind weighting ot 
pressure gradients) ; 

5. compute mass source errors ; 

6. solve an equation for the correction to the pres- 
sure field necessary to eliminate the mass source 
errors, and then correct the pressure and velocity 
fields. 

Multigrid procedure 

In the present work the FAS-FMG (full approxi- 
mation storageefull multigrid) algorithm originally 

developed by Brandt 1231 is employed to solve the 
mean-flow equations. The present implementation 

derives from the previous work by Demuren [24]. The 
main differences relate to the changes to the relaxation 
scheme due to non-staggered grids and the sequential 

solution steps discussed in the preceding section. 
Numerical experiments showed no advantage in using 

the coupled approach proposed by Vanka [25] 
implemented in ref. [24], and it can be shown math- 

ematically that it is less stable in a single-grid 
procedure. Further, the sequential approach is more 

easily vectorizable. 
The multigrid process starts on the coarsest grid 

with relaxation cycles repeated until convergence. The 
next finer grid is then generated by halving the sizes 
of control volume sides in each direction. The coarse 
grid results are then prolongated onto the fine grid 
to provide initial conditions. The multigrid process 
cycles between the two grids until convergence is 
obtained on the finer grid. The next finer grid is then 

generated and initialized as before. The MC process 
now cycles between the three grids until convergence. 
The present implementation uses V-cycles with one 
relaxation sweep on the finest grid before residuals 
arc restricted to a coarser grid, and one relaxation is 
also performed on each intermediate grid. Five relax- 
ation sweeps are performed on the coarsest grid. This 
is not the most efficient cycling scheme, but it has been 
found to be a good compromise between robustness 
and efficiency in a wide range of test cases. 

Restriction and prolongation operators are rc- 
quired to transfer the fine grid approximations and 
residuals onto the coarse grid and the coarse grid 
corrections onto the fine grid, respectively. Residuals 
are restricted by simply summing the residuals of the 
eight fine grid CVs that make up each coarse grid 
CV. Otherwise, trilinear interpolation is used for 
restricting the primitive variables or prolongating the 
corrections. 

The equations for turbulent quantities k. E and U,U, 
are only solved on the current finest grid level during 
the MC process. Values required for diffusion fluxes 
or source terms on coarser grids are restricted from 
these. In future work, the MG process will be extended 
to these variables as well. The scheme must be modi- 
fied however to ensure that k. E and the normal stress 

7 
components 2, 2 and u; can never become negative 
at any stage. 
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RESULTS AND DISCUSSION 

Computational details 
The test case for the present work is selected from 

experimental studies of pairs of opposed jets dis- 
charging normally into a cross stream reported by 
Atkinson et al. [3]. Figure 2 shows a schematic 
diagram. Two jets of equal diameter D issue at the 
same velocity from opposite pipes into a cross stream. 
The channel height is equal to 4D and the width is 
120. The jet to crossflow velocity ratio R is 1.8 and 

the Reynolds number based on the cross stream vel- 
ocity and channel height is 1.1 x 10’. An indication of 

the grid distribution is given in Fig. 3 which shows 
the velocity vectors in the center plane computed on 
the finest grid of a three-level MG scheme. The coars- 
est grid has (12x10~22) points in the (~‘,y~,y’) 
directions. There are two planes of symmetry so com- 
putations are only performed for a quarter section of 

the flow domain which extends from 40 upstream of 
the jet hole to 140 downstream. The vector plots show FIG. 2. Pair of opposed jets in crossflow. 

d/D 

1.33 

0.00 
0.00 

(a) Near field 

1.00 2.00 3.00 

Y=ID 

8.0 12.0 
Y=ID 

(b) Whole field 

FIG. 3. Computed velocity vectors in center plane, Re = lo’, R = 1.8. 
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FIG. 4. Residual history: laminar jet in crossflow, Re = 100, R = 1.8. 

that the jets from opposite sides impinge at the mid- 
plane about ID downstream. 

Convergence rares 

In order to evaluate the multigrid performance lami- 

nar flow calculations were made for the configura- 
tion of Fig. 2, but with the outlet plane at 40 down- 

stream of the jet hole, and a cross stream Reynolds 
number of 100. Three calculations were made: 
single grid, two-level MG and three-level MG. The 
finest grid in each case has (42 x 34 x 82) points in the 
(y ‘, J,‘, y3) directions. The residuals of the momentum 
and continuity equations are plotted against the num- 
bcr of iterations in Fig. 4. MG acceleration is clearly 
demonstrated, with reduction of 3-4 orders of mag- 
nitude in about 50 cycles, corresponding to a spectra1 
radius (error reduction rate per cycle) of about 0.85. 
Figure 5 shows the history of the U2 and U3 velocity 
components at a typical point (1 D, lD, 1D) in the 
domain. The three-level MC results reach asymptotic 
values in about five cycles, the two-level MG in about 
30 cycles and the single grid results are still a long way 
away. Of course, the FMG scheme ensures that initial 

values on fine grids are good guesses of the final solu- 
tion since they are interpolated from converged coarse 
grid results. Each MG cycle of the three-grid-level 
calculations took 2 s of CPU time of the Cray YMP, 
25% of which was overhead for prolongations, restric- 
tions and smoothings on coarser grids. 

The residual histories for laminar, k--E model and 

RSM calculations on the three-level MG are com- 
pared in Fig. 6. There is again rapid convergence 
in the first 50 cycles, thereafter the convergence rate 
deteriorated with the complexity of the system of 
equations. The turbulent flow computations were 
made at Re = 1.1 x lo5 so they are not for exactly the 
same conditions as the laminar flow. 

It has not been possible to confirm grid inde- 

pendency within the limits of the available computer 
resources. Figure 8 compares vertical profiles of the 
streamwise velocity component in the center plane at 
60 and 8D computed with a three-level MG and a 
four-level MG. The k-E model is used in both com- 
putations. Significant differences exist only near the 
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FIG. 6. Comparison of residual histories : laminar, k-E model and RSM computations. 
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FIG. 7. Velocity histories at point (1 I), I D. ID) : laminar. X--E model and RSM computations. 

mid-plane at 6D, but at 80 the results are quite close. 
The differences are much smaller than those reported 
by Claus and Vanka [12] in their study of a row of 
jets in crossflow. The differences are also small in 
comparison with deviations from experimental data. 
It should be noted that there is an eight-fold difference 
in the number of grid points utilized. Calculations 
with RSM also show similar changes with grid 
refinement. In the light of these, all subsequent results 
to be presented are for calculations on the three-level 
grid. 

The present computations with the two turbulence 
models, on a three-level grid, are compared with ex- 
perimental results of Atkinson et al. [3] in Figs. 9-1 I. 
Vertical profiles of the streamwise velocity component 
are compared in Fig. 9. The RSM predicts higher 

(a) y3= 6D 

magnitudes near the mid-plane and lower magnitudes 
near the wall. In terms of agreement with experimental 
data, there is little to choose between them. The largest 
deviation from experimental data is at 120. Although 
the profiles are the same shape the experimental data 
indicate magnitudes which are 20% lower. In fact, 
the data show a 10-l 5% reduction in the streamwise 
velocity between 8D and 120. This is unusual since it 
would be expected that the flow should tend towards 
more uniformity with distance downstream, and the 
normalized streamwise velocity should approach 
unity rather than deviate further from it. It is possible 
that there is a systematic error in the experimental 
data. 

The Reynolds stresses are compared along the 
center plane, at axial locations 80 and 120 in Figs. 
10 and 11, respectively. The k--E model consistently 
overpredicts the normal stresses. This indicates that 

(b) y3= 8D 

:ri--g-i 

g 1.0 

0.5 

FIG. 8. Grid dependency test, Re = lo’, R = 1.8. 
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FIG. Il. Comparison of Reynolds stresses along (y’,r’) = (0,120): lines, present computations; symbols. 
experiment [3]. 

the turbulent kinetic energy is overpredicted. The cul- 
prit is likely to be the production term G (equation 
(7)) which is known to lead to infinite turbulent kinetic 
energy near the impingement point in a stagnation 
flow, when used in conjunction with the eddy viscosity 
hypothesis. The RSM produces normal stresses which 
are in better agreement with the measurements, except 
212 near the mid-plane. At 80 both models predict 

excessive shear stress magnitudes in comparison with 
experimental data. At 12D, the RSM results agree 
better with the data. Another unusual feature of the 
data is that they indicate an increase in shear stress in 
going from 80 to 12/I, whereas one would expect a 
decrease, as the computations show. These exper- 
iments are, of course, quite difficult to perform. A 
slight difference in the flow properties of the opposing 
jets may lead to significant deviations from symmetry 
about the mid-plane and perhaps unsteadiness and 
other unexpected effects. On the other hand, the RSM 
predictions are far from perfect. The present version 
of RSM, based on the proposals of LRR [14], is one 
of the simplest and most widely tested. However, it is 
known to have shortcomings in complex flows with 
strong swirl and curvature. Recently, a more sophis- 

ticated RSM has been proposed by Craft et al. (261 
and Speziale et ul. [27]. The former has demonstrated 
improved predictions of strongly swirling flows and 
the latter has performed better in homogeneous shear 
flows with rotation. They are however still at an early 
stage of testing and validation in a wider range of 

flows. For example, initial application to homo- 
geneous shear flow with curvature (Tselepidakis, 
private communication) did not replicate such 
improvements. 

CONCLUDING REMARKS 

A multigrid procedure for calculating turbulent jets 
in crossflow has been presented. Multigrid con- 
vergence rates are demonstrated for laminar flow. 
There is some degradation in performance with 
increase in complexity of the turbulence model, but 
the convergence rates are still quite impressive in com- 
parison to those for single grids. The two turbulence 
models predict nearly the same level of agreement of 
mean streamwise velocity with experimental data. But 
the RSM predicts Reynolds stresses which are in much 
better agreement with experiments. 
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MODELES DE TURBULENCE AVEC ACCELERATION MULTlGRILLE POUR LE 
CALCUL DES JETS TURBULENTS 3D EN ECOULEMENT CROISE 

Resume-On prcsente une mtthode multigrille pour le calcui des jets turbulents tridimensionnels en 
Ccoulemcnt croise. La fermeture es1 obtenue avec soit le modele k-c soit un modele de contrainte de 
Reynolds (RSM). L’accCICration multigrille conduit a des vitesses de convergence tres suptrieures a celles 
de la methode a grille unique pour les deux modeles de turbulence. Avec le modtle k-c la vitesse approchc 
celle pour I’ecoulement laminaire mais elle est un peu plus faible avec RSM car dans ce dernier cas le 
systtme d‘equations est plus lourd. Les rtsultats calcults avec les deux modtles de turbulence sont compares 
aux donnees experimentales pour une paire de jets opposes en ecoulement croise. Les deux modeles donnc 
un accord raisonnable en ce qui concerne la vitesse moyenne de I’tcoulement, mais RSM prcdit mieux les 

contraintes de Reynolds. 



MEHRGITTER-BESCHLEUNIGUNGS- UND TURBULENZ-MODELLE FUR DIE 
BERECHNUNG DREIDIMENSIONALER QUERANGESTRGMTER TURBULENTER 

STRAHLEN 

Lusammenfassung--In der vorliegcndcn A&it wit-d tin Mchrgittcr-Vcrfimren I‘iir die Berechnung drci- 
dimensionaler turbulenter qucrangestromter Strahlen borgestellt. Der TurbulenzschluB wird mit dem X 
E-Standardmodell oder einem Reynolds’schen Spannungsmodell (RSM) erzielt. Die Mehrgitter-Besch- 
leunigung ermoglicht bei beiden Turbulenzmodellen Konvcrgcnzgeschwindigkciten, die wesentlich hoher 
sind als mit Einfachgitter-Methoden. Beim k +-Model1 erreichen die Werte dcr Konvergenzgeschwindigkeit 
diejenigen der laminaren Stromung. wiiht-end sic hei der RSM-Methode geringer sind. Die crhohte Stei- 
figkeit des Glcichungssystems bei letzterct Mcthodc kiinntc hierliir verantworlich sein. Bcre- 
chnungsergebnissc aus beiden Turbulcnzmodellen werden mit experimentellen Damn fur zwei gegcnii- 
berliegende Fluidstrahlen im Kreuzstrom verglichen. Beide Modelle erzielen einc plausible 
iibercinstimmung der mtttleren Stromungsgeschwindigkeit, jedoch ist mit der RSM-Mcthode etne bessere 

Vorausbercchnung dcr Reynolds-Spannung erzielbar. 

HCHOJIb30BAHHE MHOFOCETOgHbIX MOAEJIEH AJIR PAC9ETOB TPEXMEPHbIX 
TYPEYJIEHTHbIX CTPYH HPM HEPEKPECTHOM TEr4EHMM 

h,,OT,U,,“,+~pC~CTaBneH MHO1.OCCTOYHbIii Melon paWeTa TpeXMepHbIX Typ6yneHTHbIX CTpyii IIpH 

“CpeKpCCTHOM Te9eHHH. 3aMbIKaHKe CACTeMbl ypaBHCHHii OCyIWCTBnKeTCSl C IIOMOlttbH) CTaHAapTHOti 

k--E MOneJU4 Iinll MOneJIii petiHOnbCOBCKHX HaIIpn~eHAii (RSM). MCnOnb3OBaHHe MHOI-OCeTOYHbIX 

Moneneii nO3BOnKeT flOCTH’,b I-Opa3nO 6onbmeii CKOPOCTA CXOLUiMOCTW, 4eM IIpU OilHOCeTOqHOM 

MeTo&, nns odeax MOneneii Typ6yneHTHOCTU. npa IIpHMeHeHtS, k-c MOnenA CKOpOCTb npa6nu~aeTcfl 

K 3HaqeHtiw LlJIR naMHHapHOr0 TeqewK, B cny=iae xe ‘lCIIOnb30BaHEUI MoAene RSM OHa HeCKOnbKO 

HNxe, ‘iTO MOTeT 06arCH5ITbC5I 6onbmel XeCTKOCTbK) CIiCTeMb, ypaBHeHBii B 3TOti MOLLenH. Pe3ynbTaTbI 

PaCVeTOB “0 06eEIM MOnenKM Typ6ySZHTHOCTA CpaBHHBaloTCtJ C 3KCIIepHMeHTaJIbHbIMH IIaHHbIMII UIK 

“apbl npOTHBOIlOnO~H0 HaIIpaBJIeHHbIX IIepeKpeCTHbIX CTpyk npU 3TOM NE4 CpenHeti CKOpOCTA 

TeqeHwI o6e Monenu ,qaror xopomee cornacae, a am peiiHonbflcoBcKHx HanpaxeHtiir 6onee TowbIMA 

IIBJIKIOTCII pC3ynbTaTb1, IIOnyYeHHbIe Ha OCHOBC MOlWIEi RSM. 


